An Approach for Foliar Trait Retrieval from Airborne Imaging Spectroscopy of Tropical Forests
نویسندگان
چکیده
Spatial information on forest functional composition is needed to inform management and conservation efforts, yet this information is lacking, particularly in tropical regions. Canopy foliar traits underpin the functional biodiversity of forests, and have been shown to be remotely measurable using airborne 350–2510 nm imaging spectrometers. We used newly acquired imaging spectroscopy data constrained with concurrent light detection and ranging (LiDAR) measurements from the Carnegie Airborne Observatory (CAO), and field measurements, to test the performance of the Spectranomics approach for foliar trait retrieval. The method was previously developed in Neotropical forests, and was tested here in the humid tropical forests of Malaysian Borneo. Multiple foliar chemical traits, as well as leaf mass per area (LMA), were estimated with demonstrable precision and accuracy. The results were similar to those observed for Neotropical forests, suggesting a more general use of the Spectranomics approach for mapping canopy traits in tropical forests. Future mapping studies using this approach can advance scientific investigations and applications based on imaging spectroscopy.
منابع مشابه
Organismic-Scale Remote Sensing of Canopy Foliar Traits in Lowland Tropical Forests
Airborne high fidelity imaging spectroscopy (HiFIS) holds great promise for bridging the gap between field studies of functional diversity, which are spatially limited, and satellite detection of ecosystem properties, which lacks resolution to understand within landscape dynamics. We use Carnegie Airborne Observatory HiFIS data combined with field collected foliar trait data to develop quantita...
متن کاملPrediction of Macronutrients at the Canopy Level Using Spaceborne Imaging Spectroscopy and LiDAR Data in a Mixedwood Boreal Forest
Information on foliar macronutrients is required in order to understand plant physiological and ecosystem processes such as photosynthesis, nutrient cycling, respiration and cell wall formation. The ability to measure, model and map foliar macronutrients (nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg)) at the forest canopy level provides information on the spatial ...
متن کاملTropical Forests of Réunion Island Classified from Airborne Full-Waveform LiDAR Measurements
From an unprecedented experiment using airborne measurements performed over the rich forests of Réunion Island, this paper aims to present a methodology for the classification of diverse tropical forest biomes as retrieved from vertical profiles measured using a full-waveform LiDAR. This objective is met through the retrieval of both the canopy height and the Leaf Area Index (LAI), obtained as ...
متن کاملA Second Dimension to the Leaf Economics Spectrum Predicts Edaphic Habitat Association in a Tropical Forest
BACKGROUND Strong patterns of habitat association are frequent among tropical forest trees and contribute to the maintenance of biodiversity. The relation of edaphic differentiation to tradeoffs among leaf functional traits is less clear, but may provide insights into mechanisms of habitat partitioning in these species rich assemblages. METHODOLOGY/PRINCIPAL FINDINGS We quantify the leaf econ...
متن کاملFoliar and ecosystem respiration in an old-growth tropical rain forest.
Foliar respiration is a major component of ecosystem respiration, yet extrapolations are often uncertain in tropical forests because of indirect estimates of leaf area index (LAI). A portable tower was used to directly measure LAI and night-time foliar respiration from 52 vertical transects throughout an old-growth tropical rain forest in Costa Rica. In this study, we (1) explored the effects o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 10 شماره
صفحات -
تاریخ انتشار 2018